Multi-agent path finding with mutex propagation

نویسندگان

چکیده

Mutex propagation is a form of efficient constraint popularly used in AI planning to tightly approximate the reachable states from given state. We utilize this idea context Multi-Agent Path Finding (MAPF). When adapted MAPF, mutex provides stronger constraints for conflict resolution CBS, popular optimal search-based MAPF algorithm, as well MDD-SAT, an satisfiability-based algorithm. CBS with ability break symmetries and MDD-SAT make inferences than unit propagation. While existing work identifies limited requires manual design symmetry-breaking constraints, more general allows automated constraints. Our experimental results show that capable outperforming CBSH-RCT, state-of-the-art variant respect success rate. also often performs better

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Agent Path Finding with Delay Probabilities

Several recently developed Multi-Agent Path Finding (MAPF) solvers scale to large MAPF instances by searching for MAPF plans on 2 levels: The high-level search resolves collisions between agents, and the low-level search plans paths for single agents under the constraints imposed by the high-level search. We make the following contributions to solve the MAPF problem with imperfect plan executio...

متن کامل

Multi-Agent Path Finding with Kinematic Constraints

Multi-Agent Path Finding (MAPF) is well studied in both AI and robotics. Given a discretized environment and agents with assigned start and goal locations, MAPF solvers from AI find collision-free paths for hundreds of agents with userprovided sub-optimality guarantees. However, they ignore that actual robots are subject to kinematic constraints (such as finite maximum velocity limits) and suff...

متن کامل

k-Robust Multi-Agent Path Finding

This paper presents a planner that can solve the k-robust MAPF planner which is based on the Conflict-based search (CBS) (Sharon et al. 2015) MAPF solver. CBS does not explicitly search the n-agent state space. Instead, agents are associated with constraints of the form 〈ai, v, t〉, which would prohibit agent ai from occupying vertex v at time step t. A consistent path for agent ai is a path tha...

متن کامل

Summary: Multi-Agent Path Finding with Kinematic Constraints

Multi-Agent Path Finding (MAPF) is well studied in both AI and robotics. Given a discretized environment and agents with assigned start and goal locations, MAPF solvers from AI find collision-free paths for hundreds of agents with user-provided sub-optimality guarantees. However, they ignore that actual robots are subject to kinematic constraints (such as velocity limits) and suffer from imperf...

متن کامل

Conflict-Based Search for Optimal Multi-Agent Path Finding

In the multi agent path finding problem (MAPF) paths should be found for several agents, each with a different start and goal position such that agents do not collide. Previous optimal solvers applied global A*-based searches. We present a new search algorithm called Conflict Based Search (CBS). CBS is a two-level algorithm. At the high level, a search is performed on a tree based on conflicts ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Artificial Intelligence

سال: 2022

ISSN: ['2633-1403']

DOI: https://doi.org/10.1016/j.artint.2022.103766